Nearest Neighbor Partitioning

Description
Nearest neighbor partitioning uses evolutionary computation to optimize the neural-network parameters, i.e., the weights and biases of a multilayer perceptron. The core of the optimization rests in the fitness evaluation, guiding the direction of evolution. To evaluate a set of parameter values, we first map all of the training samples into partition space using the corresponding neural network. Then, the quality of the mapping (and, thus, the neural network) is evaluated by the distribution of nearest neighbors, assigning a higher fitness when samples from the same class get mapped close together and samples from different classes get mapped farther apart. After optimization, we obtain the parameters for the best neural network, as well as its corresponding partition space, whose features are reflected by the mapped training samples. Based on the distribution of mapped training samples, the category of any new sample is predicted according to its nearest neighbors in partition space using the process of classical k-Nearest Neighbors (kNN).
This algorithm contains four stages in the following sections.
· Mapping: The neural network is used to map the original samples from data space to new points in partition space.
· Normalization: After mapping samples into partition space, to bring the different dimensions into a common scale, the Z-score is adopted to standardize points.
· Similarity: First, the normalized points are constrained into a hypersphere of radius 1 using
[image:]
Then, based on the constrained points, the similarity s between two points is defined as
[image:]
· Optimization Target Function: The optimization target function F
[image:]
where n is the number of points, Sself(xi) is the sum of within-class similarities in the neighborhood of xi, and Snonself(xi) is the sum of similarities between xi and points from the other classes in its neighborhood. ω(xi) is weight for a point x in partition space.
Data sets:
The data sets were selected from the UCI machine learning repository http://archive.ics.uci.edu/ml/.
For each data set, all of the features were normalized to the same scale using min-max normalization to eliminate the influence of different scales between features. The min-max normalization is adopted because it is able to constrain features to a compact range [0, 1] and thus puts the neural inputs and outputs into the same scale when a sigmoid function is adopted. Features were re-scaled using

where f is the original value of the feature, fmax represents the maximum value of the feature, and fmin represents the minimum value.
pay attention: Datasets downloaded from the UCI database must be processed using min-max normalization.

Parameters:
	Name
	Range
	Instructions

	CLASS_NUMBER
	/
	Number of classes for data set

	PARTITION_SPACE_DIMENSION
	[1,30]
	Dimension in the partition space

	INPUT_DIMENSION
	/
	Features of data set

	INPUT_NEURONS_NUMBER
	/
	Number of input neurons for neural network, corresponds to INPUT_DIMENSION

	HIDDEN_NEURONS_NUMBER
	20
	Number of hidden neurons for neural network

	OUTPUT_NEURONS_NUMBER
	[1,30]
	Number of output neurons for neural network, corresponds to PARTITION_SPACE_DIMENSION

	NEURAL_NETWORKS_WEIGHTS_NUMBER
	/
	Number of connection weights

	SPARSE_NEIGHBOUR_NUMBER
	[1,50]
	Number of nearest neighbors L in training

	TRAIN_PROCESS_NEIGHBOUR_NUMBER
	{1,3, …25}
	Number of nearest neighbors K in testing

	A
	[10-2,10]
	discrimination weight α

	POPULATION_SIZE
	20
	Number of population

	INIT_MAX
	1
	Maximum position of particle

	INIT_MIN
	-1
	Minimum position of particle

	FI0
	1
	Learning factor

	FI1
	1.8
	Learning factor

	FI2
	1.8
	Learning factor

	PSO_V_MAX
	0.4
	Maximum velocity of particle

Example: For Iris data set, parameters are set as follows.
	Name
	Value

	CLASS_NUMBER
	3

	PARTITION_SPACE_DIMENSION
	6

	INPUT_DIMENSION
	4

	INPUT_NEURONS_NUMBER
	4

	OUTPUT_NEURONS_NUMBER
	6

	SPARSE_NEIGHBOUR_NUMBER
	15

	TRAIN_PROCESS_NEIGHBOUR_NUMBER
	5

	A
	1

[bookmark: _GoBack]Test method:
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]A tenfold cross-validation was adopted to perform a reliable comparison and analysis. First, the original data set was divided into ten subsets by way of allocating samples from each class to each of the subsets randomly and uniformly. After that, one of the subsets was used as the testing set, while the other nine subsets were used as training models. Following that, another subset performed the role of a testing set, while the other nine subsets were used for training. This procedure was repeated ten times until each subset had been used as the test data set.
Each data set is divided into ten training data and ten testing data. When using each training data to train the model, the corresponding test data is used to test accuracy in turn. The average of the ten results is the final result.
Example: For Iris data set, iris_train_0.txt as training and iris_test_0.txt as testing;
iris_train_1.txt as training and iris_test_1.txt as testing;
……
iris_train_9.txt as training and iris_test_9.txt as testing;
Finally, ten results averaged.
Program compiled method:
The computing platform used in experiments is a GPU-based desktop supercomputer with C programming environment and Linux operation system.
Step:
[image:]
Instruction:
make clean: Clear the object file (file with suffix “.o”) and executable file generated by the last make command.
make: According to Makefile compile source code, connect, generate target file, executable file.
[bookmark: references]References:
If you use the code, please do cite the following paper:
Wang L, Yang B, Chen Y, et al. Improving Neural-Network Classifiers Using Nearest Neighbor Partitioning. IEEE Transactions on Neural Networks & Learning Systems, 2017, 28(10):2255-2267.

image3.png
F = (%) (Snonsetr(%i) — @Sseir (%))}

i=1

image4.png
File Edit View Search Terminal Help

[zxhelocalhost femknn]s make clean
m fenknn

[zxhelocalhost femknn]s make

g++ -0 femknn femknn.cpp - fopenmp
[zxhelocalhost femknn]s ./femknnll

image1.png
o2

x| + [x|e~xI/2

image2.png
$(x1,X2) =2 = |h(x1) = h(x))]

